
� is
estimated to be� 20% on average(Dressing & Charbon-
neau2015). Apart from the general curiosity of� nding how
common Earth-like planets are in our galaxy, the focus on� � has
a more practical application: it can be used in the design of direct
imaging missions, like the concept studies under consideration,
HabEx,11 the Habitable Exoplanet Explorer, the Large Ultra-
violet Optical Infra Red(LUVOIR),12 and the Large UV-Optical-
InfraRed surveyor, with the goal of detecting biosignatures, and
also in calculating“exo-Earth candidate yield,” the number of
potentially habitable extrasolar planets(exo-Earth candidates)
that can be detected and spectroscopically characterized(e.g.,
Stark et al.2014, 2015).

Crucial to these estimates is the location of the main-sequence
HZ, which has been studied by both 1D and 3D climate models
(Kasting et al.1993; Selsis et al.2007; Abe et al. 2011;
Pierrehumbert & Gaidos2011; Kopparapu et al.2013;
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10 http:// exoplanetarchive.ipac.caltech.edu/

11 http:// www.jpl.nasa.gov/ habex/
12 https:// asd.gsfc.nasa.gov/ luvoir/
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Leconte et al.2013; Yang et al. 2013; Zsom et al.2013;
Kopparapu et al.2014; Wolf & Toon 2014; Yang et al.2014;
Godolt et al.2015; Leconte et al.2015; Way et al.2015; Wolf &
Toon 2015; Haqq-Misra et al.2016; Kopparapu et al.2016,
2017; Ramirez & Kaltenegger2017). With some exceptions for
certain types of planets(Kane et al.2014), there has not been an
overarching way to classify planets beyond the HZ. The lack of a
systematic way to classify exoplanets, in general, combined with
the allure of planets within it, has led to direct imaging mission
yield analyses that focus on HZ planets to the exclusion of
everything else(e.g., Stark et al.2014, 2015). While some
mission studies have attempted to classify the non-HZ planets
into hot, warm, and cold planets that a mission would discover,13

the boundaries for the classi� cation are arbitrarily� xed without
giving consideration to chemical behavior of gases and
condensates in a planetary atmosphere. Other studies proposed
classes of atmospheres based on planetary equilibrium temper-
ature and mass(Forget & Leconte2014). Classifying different
sized planets based on the transition/ condensation of different
species(Burrows et al.2004; Burrows2005; Pierrehumbert &
Ding 2016) provides a physical motivation in estimating
exoplanet mission yields, separate from exo-Earth candidate
yields.

In the search for exo-Earth candidates, we will undoubtedly
detect a multitude of brighter planets. According to Stark et al.
(2014), for an 8 m sized telescope, the number of exo-Earth
candidates detected is� 20 (see Figure 4 in Stark et al.2014),
although this is strongly dependent on the value of� � . At the
same time, the number of stars observed to detect these exo-
Earth candidates is� 500. If we assume that, on average, every
star has a planet of some size(Cassan et al.2012; Suzuki
et al.2016), then there are� 500 exoplanets of all sizes that can
be observed. Not considering the� 20 exo-Earth candidates, the
bulk of the exoplanets will fall into“non-Earth” classi� cation,
without any distinguishing features between them. This provides
an additional motivation to devise a scheme based on planetary
size and corresponding atmospheric characteristics of exoplanets.

Some work has been done at the theoretical level to derive
the radiative response of an irradiated atmosphere(Robinson &
Catling 2012, 2014; Parmentier & Guillot2014; Parmentier
et al.2015), but these analytical tools have neither been used to
derive any general boundaries nor tied to planet occurence
estimates, and were not designed with that intent in mind. This
highlights the need for a theory-based system to classify planets
beyond the HZ for the purposes of understanding the diversity
of worlds future missions could explore. Such a system should
be based on the properties we can measure today, primarily size
and orbital information, and the boundaries in the scheme
should divide planets with major differences into the properties
that would be observable with current and future missions.

Fortunately, much of the theory needed for such a
classi� cation scheme already exists. There has been signi� cant
progress in understanding how the size of a planet is a major
control on composition, and therefore on future observables
(Rogers & Seager2010a, 2010b). This includes work on the
relationship between size, density, and bulk composition
(Fortney et al.2007; Weiss & Marcy 2014; Rogers2015;
Chen & Kipping2016; Wolfgang et al.2016). While the exact
values for the boundaries of mass–radius change based on the
speci� c analysis or theoretical technique, there is growing

evidence of structure in the occurrence rate distribution that
suggests compositional aggregates:(1) small, rocky worlds
whose bulk composition and behavior is dominated by Fe, Mg,
and Si species;(2) planets with Fe/ Mg/ Si cores but signi� cant
gas envelopes consisting of H/ He,CH4, NH3 ices; and(3) gas
giants whose bulk composition and behavior is dictated almost
exclusively by its volatiles.

Similarly, there have been signi� cant advances in our
understanding of how the orbital separation of non-HZ planets
could affect the chemical composition of the atmosphere
(Cahoy et al.2010). A constant theme across these studies is
the in� uence of clouds. As a planet moves further from its host
star, its atmosphere will cool and lead to condensation of
progressively less volatile chemicals in the atmosphere. This
condensation would create a cold trap and an associated cloud
deck. The result of this is a signi� cant change in spectral
properties: as the condensing species would be trapped at or
below the cloud deck, the cloud deck itself would absorb and
scatter light, causing preferential sampling of the layers at or
above the cloud deck. Multiple“onion-like” cloud decks can
form as sequentially less volatile species condense at higher
altitudes for planets with greater star–planet separation
distances and correspondingly lower levels of incoming stellar
� ux. This process can be observed in detail in the gas giants of
our own solar system(Evans & Hubbard1972), and has been
postulated to be a driver for the atmospheric structure and
observable properties of exoplanet atmospheres(Burrows &
Sharp 1999; Sudarsky et al.2003; Fortney 2005; Marley
et al. 2007; Morley et al. 2013; Wakefor & Singh 2015;
Wakeford et al.2017). We also note that the HZ itself has been
de� ned in a manner consistent with this, as the instellations
(stellar incident� ux) at which liquid water clouds form but
carbon dioxide clouds do not(Abe et al.2011).

This prior work enables the construction of an overarching
scheme for identifying classes of planets. This scheme could
apply to all worlds, regardless of whether they are rocky or
gaseous(or something in between). And it would be both based
on the current observable properties and prediction of major
transitions in future observables. In short, this represents a
comprehensive means of predicting the diversity yields of future
planet characterization missions. Below we discuss in more
detail how we simulate the processes underlying this classi� ca-
tion scheme. These simulations de� ne the boundaries between
different planet classes, for which we calculate occurrence rates
based on prior exoplanet detection missions. The occurrence
rates allow us to simulate exoplanet yields—not just for HZ
planets but for a diversity of different kinds of worlds. Finally,
we close with a discussion of the caveats of this approach, and
the implications of this scheme for future missions.

2. A New Classi� cation Scheme

A planet size—and the relationship between its size and mass
—appears to be primarily driven by volatile inventory. For
example, the atmospheric composition of larger planets is
predominantly H2/ He, while smaller planets can have a mixture
of CH4, CO2, H O2 , and NH3. High-temperature atmospheres,
such as hot Jupiters, should have their chemistry—and therefore
their spectral features—determined primarily by equilibrium
chemistry. Low-temperature atmospheres will have chemistry
dictated by photochemistry, but this will be secondary to
determining what species are condensing in their atmospheres.
The exception to this—which we will discuss later—is for13 https:// exoplanets.nasa.gov/ exep/ studies/ probe-scale-stdt/
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photochemical aerosols, which could have a major impact in the
same manner that clouds do.

The chemical behavior of gases and condensates in a
planetary atmosphere can be determined as a function of
pressure, temperature, and metallicity. Using results from
Lodders & Fegley(2002) and Visscher et al.(2006) adapted
with solar abundances taken from Lodders(2010), we have
computed the condensation curves for sphalerite ZnS,H O2 ,
CO2, andCH4 as a function of pressure and temperature for
systems with a solar metallicity. Pressure–temperature pro� les
of planetary atmospheres are tightly related to the incoming
stellar � ux. We de� ne the boundaries between our different
selected planetary cases as the stellar� uxes for which these
four species condense out. For instance, ZnS clouds have been
considered as possible condensates in hot exoplanet atmo-
spheres(Morley et al. 2012; Charnay et al.2015), so the
location (or the stellar� ux) at which ZnS clouds form in a
planetary atmosphere denotes the� rst boundary for our planet
classi� cation. Moving further away from the star, at relatively
lower stellar� uxes,H O2 starts condensing in the atmosphere.
This, then, becomes the next boundary for grouping different
planets. Between these two boundaries is where one would
expect to� nd ZnS mineral clouds andH O2 in a gaseous state.
Continuing to lower� uxes,CO2 andCH4 condensates bracket
� nal boundaries. The results are independent of any particular
model atmospheres, and in principle, any pressure–temperature
pro� le may be superimposed on these condensation curves to
� nd the equilibrium composition along the pro� le. In
particular, the intersection of a particular pressure–temperature
pro� le with one of these condensation curves indicates the
pressure and temperature at which the respective species
condenses out in the planetary atmosphere considered. We
have investigated the different incident stellar� uxes, or
instellations, for which condensates could form within the
regions of an exoplanet system that will be probed by future
direct imaging missions. Speci� cally, we simulate the star–
planet separations for which ZnS,H O2 , CO2, andCH4 would
condense out in planetary atmospheres. Other metallic clouds
can condense at distances closer to the star than the ZnS
condensation line, and other volatiles(e.g., NH3) can condense
at orbiting distances beyond theCH4 condensation line, but
such worlds are likely undetectable by future direct imaging
missions, so they are not simulated here.

We have considered six different planetary size boundaries:
0.5R� , 1.0R� , 1.75R� , 3.5R� , 6.0R� , and 14.3R� in our grid.
These boundaries represent, respectively, the radius(0.5 R� ) at
which planets in the HZ appear to not have a suf� cient gravity
well to retain atmospheres(Zahnle & Catling2017); the“super-
Earths” (1–1.75R� ) and “sub-Neptunes” (1.75–3.5R� ), as
de� ned by Fulton et al.(2017; see Section 4.4) based on the
observed gap in the radius distribution of small planets with
orbital periods shorter than 100 days; the assumed upper limit on
Neptune-sized planets(6R� ) based on the small peak in the
radius distribution from Fulton et al.(2017); and the radius
past which planets transition to brown dwarf stars(Chen &
Kipping 2016). We have computed the corresponding pressure–
temperature atmospheric pro� les using(1) the nongray analytical
model of Parmentier & Guillot(2014) with the coef� cients from
Parmentier et al.(2015) and the Rosseland opacity functional
form of Valencia et al.(2013), and(2) the gray analytical model
of Robinson & Catling(2012, 2014), both modi� ed to take the
planetary size and instellation as unique input parameters. We

have used the Robinson & Catling(2012, 2014) model for
planets with radii smaller than 3.5R� at low instellations, and
the Parmentier & Guillot(2014) model for planets with a radius
of 14.3 R� at high instellations. We have assumed an internal
temperatureTint�= �0 and mass–radius relations taken from
Weiss & Marcy(2014) for planets with radii smaller than 3.5
R� . We have assumed an internal temperatureTint�= �100 and
the density calculated from the mass–radius relation from Chen
& Kipping (2016) for planets with radii equal to 14.3R� .
Assuming a planetary mass of 0.414MJ (131M� ), the density is
� 0.25 g cmŠ3. We have consideredL�= �0.95Le and
M�= �0.965Me for the parent star.14

As an illustrative example, we show in Figure1 the
condensation curves for the four different species we
considered(solid black), along with temperature pro� les for
two different sized planets: 0.5R� and 14.3R� , at different
incident stellar� uxes (“ instellation”). The � gure shows that
ZnS would condense out at� 10 mb in the atmosphere of a
highly irradiated(220 times Earth� ux) 14.3 Earth radius
planet, a typical hot Jupiter, whereasCH4 would condense out
in the atmosphere of a 0.5 Earth radius planet receiving only
� 1/ 280th the� ux Earth is receiving. Following this procedure,
we have derived the radius and stellar� ux where other gaseous
species condense in the atmosphere. Table1 provides the
corresponding data of the planetary radius and stellar� ux
boundaries that can be used for classifying planets into
different regimes. These boundaries are parameterized in
Equation(1) and are also available as an online calculator at
https:// tools.emac.gsfc.nasa.gov/ EBC/

= + + + + +( ) ( )F R a x b x c x d x e x f , 1p i i i i i i i
5 4 3 2

Figure 1.Dependence of ZnS,H O2 , CO2, andCH4 condensation with pressure
and temperature in any planetary atmosphere(solid black) along with the
pressure–temperature pro� les for two different sizes of planets, 0.5R� and
14.3R� and two different instellations, 0.004I� and 220I� , respectively(solid
red). The intersections of the two sets of curves indicate thatCH4 and ZnS are
condensing out in each of the considered planetary atmospheres.

14 The values of the stellar luminosity and mass are obtained as follows: we
downloaded the con� rmed and candidateKeplercatalog from NEXSCI, found
the median values of stellar luminosity and mass for each data set, and then
took the average value of luminosity and mass from these median values.
Median luminosity for the candidate planet list: 1.057. Median stellar mass for
the candidate planet list: 0.97. Median luminosity for con� rmed planet list:
0.86. Median stellar mass for the con� rmed planet list: 0.96. Average
luminosity of con� rmed and candidate:(1.057�+ �0.86)/ 2�= �0.95. Average
stellar mass of con� rmed and candidate:(0.97�+ �0.96)/ 2�= �0.965.
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whereF(Rp)i is the stellar� ux, normalized to the current Earth
� ux (1360 WmŠ2), at which speciesi�= �(ZnS, H O2 , CO2,
CH4) condenses on a planet with radiusRp, and x�= �Rp/ R�

given in Table1. The coef� cients for the four condensing
species are given in Table2.

2.1. Application of the Classi� cation Scheme to Obtain Planet
Occurrence Rates

Extending the insights obtained from Figure1 and Table1, it
is then possible to de� ne various zones as a function of stellar
� ux and planetary radius. This should qualitatively apply
across all stellar types and the entire� eld of planets, even if the
quantitative positions of the boundaries change due to, for
example, the age of the system and the amount of internal heat
released from planets, or the stellar energy distribution(SED)
and its relationship to the planetary albedo(Segura et al.2003).
For a full consideration of such caveats, see Section3.1. This
particular framing of the parameter space will allow us to
calculate the occurrence of different kinds of planets within
each zone based on their condensation conditions, as both
radius and� ux are measurable quantities.

We have performed a calculation of� planet, the fraction of
stars that have a planet within one of the zones de� ned by a
condensing species. As an illustrative example of how these
boundaries can be used to calculate the occurrence of planets,
we apply these criteria to the preliminary parametric model
introduced by one of NASA’s Exoplanet Program Analysis
Group(ExoPAG) science analysis studies(SAG13). A detailed
discussion of the SAG13 model is outside the scope of this
paper, but we will summarize the most critical points.

The SAG13 model is based on a simple meta-analysis of
planet occurrence rates from many different individual publica-
tions and groups. Speci� cally, the SAG13 group collected tables
of occurrence rates calculated over a standard grid of planet
radius, period, and stellar type. A full description of the grid is as
follows. Theith bin in the planet radius is de� ned as the interval

= - -
Å[ ) ( )R R1.5 , 1.5 . 2i

i i2 1

This implies the following bin edges:[0.67, 1.0, 1.5, 2.3, 3.4,
5.1, 7.6, 11, 17,K ] R� .

The jth bin in the planet period is de� ned as

= -[ ) ( )P 10 . 2 , 2 days. 3j
j j1

This implies the following bin edges:[10, 20, 40, 80, 160, 320,
640,K ] days.

Data and models from peer-reviewed publications(Dressing
& Charbonneau2013; Petigura et al.2013; Foreman-Mackey
et al.2014; Burke et al.2015; Traub2015) were integrated over
the standard grid, and supplemented by several unpublished
tables from the 2015Kepler“hack week,” which were based on
the Q1-Q17 DR24 catalog,Kepler completeness curves, and
data products at the time.

However, for our current work, we did not use the SAG13
standard grid mentioned above because the SAG13 grid does
not represent the condensation sequences described in the
previous section. Instead, we took the stellar� uxes from
Table 1 where species condensation happens, and calculated
the corresponding orbital periods based on the stellar mass
(0.965) Me and luminosity(0.95) Le described in footnote 14.
It should be noted that the SAG-13 grids are available for
different spectral types. Herein, our work focuses on the
G dwarf population and employs the corresponding grids.

The SAG13 submissions were then processed as follows.
First, within each spectral type, the sample geometric mean
(� i,j) and variance(�Ti j,

2 ) was computed in each(i, j)th bin of the
period–radius grid, across the different submissions. The mean
values � i,j formed a “baseline” table of occurrence rates.
“Optimistic” and “pessimistic” tables were also de� ned by
using the� i,j�± �1� i,j values for each(i, j)th bin.

SAG13 then� t a piecewise power law to the“pessimistic,”
“baseline,” and “optimistic” combined tables. The power law
had the following form:

¶
¶ ¶

= G � B � C( )
( )

N R P
R P

R P,
ln ln

. 4i
2

i i

For the optimistic case,� i�= �[1.06, 0.78], � i�= �[Š0.68,
Š0.82], � i�= �[0.32, 0.67]; for the pessimistic case,� i�=
[0.138, 0.72], � i�= �[0.277,Š1.56], � i�= �[0.204, 0.51]; and for
the baseline,� i�= �[0.38, 0.73], � i�= �[Š0.19, Š1.18], � i�=
[0.26, 0.59].

The break between two pieces of the power law was set at
3.4 R� (following Burke et al.2015), hence the two values for
the coef� cients, and a least squares� t was performed
separately to each of the pieces. Similarly to the mean and
variance above, logarithms of occurrence rates were used when
performing the least squares of log occurrence rates, rather than
actual occurrence rates, in order to properly balance the effects
of small and large occurrence rates. This resulted in
“pessimistic,” “ baseline,” and“optimistic” parametric models.
These models were then integrated across the planet parameter
boundaries described in this paper. The SAG13 occurrence
rates are given in Table3.

It should be stressed that community-sourced data do not
represent independent measurements or estimates of scienti� c
quantities, so that the SAG13 sample mean and variances
should not be interpreted as a formal mean and uncertainty of
exoplanet occurrence rates. Rather, they simply represent one
possible way to measure the state of knowledge as well as the
disagreement on the rates within the occurrence rate commu-
nity. In other words, the SAG13“pessimistic,” “ baseline,” and
“optimistic” cases refer to the typical pessimistic, average, and
optimistic submissions within the SAG13 community survey,
rather than formal scienti� c results.

Alternative ways of combining SAG13 results are also
possible, such as including only peer-reviewed submissions,
including submissions based only on different catalogs,
removing outliers, etc. A detailed analysis of this is beyond

Table 1
Planetary Radii and Stellar Flux Values at which the Given Species Condense
in a Planetary Atmosphere, for a Star withL�= �0.95Le andM�= �0.965Me

Stellar Flux(Earth Flux)
Radius(R� ) ZnS H O2 CO2 CH4

0.5 182 1.0 0.28 0.0035
1.0 187 1.12 0.30 0.0030
1.75 188 1.15 0.32 0.0030
3.5 220 1.65 0.45 0.0030
6.0 220 1.65 0.40 0.0025
14.3 220 1.7 0.45 0.0025

Note. These limits form the boundaries for classifying planets into different
categories to calculate exoplanet yield estimates. See Figure2 and Section2.2.
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the scope of this paper, but as a general rule, combinations tend
to fall somewhere between the occurrence rates published in
Petigura et al.(2013) and Burke et al.(2015) for G dwarfs,
which represent a range of about four in the warm rocky planet
regime, with a tendency to be closer to Burke et al.(2015). For
example, the geometric mean combination, which we use in
this paper, is about 25% lower than Burke et al.(2015) for
warm rocky planets, though, it is signi� cantly higher than
Petigura et al. (2013). It should also be stressed that
extrapolation is implied when integrating� tted power laws
into cold planets or very small planet sizes, so the numbers in
those regions remain very unreliable.

To judge the robustness of the SAG13 occurrence rate
estimates, independent occurrence rates were calculated using
the inverse detection ef� ciency method based on the data from
the DR25 catalog. The occurrence rate per bin,� , is given by

�ƒ
�I = S ( )

n
1 1

comp
. 5i

n

i

p

Where compi is the survey completeness evaluated at the
radius and orbital period of each planet in the bin,nå is the
number of stars surveyed, andnp is the number of planets in
each bin. The planet list is taken from Thompson et al.(2017),
using a disposition score cut of 0.9. The stellar properties are
taken from Mathur et al.(2017), removing giant stars with
logg�< �4.2 and culling the G dwarfs by selecting stars with
5300 K < Teff�< �6000 K. The completeness of each star is
calculated withKeplerPORT (Burke & Catanzarite2017),
and the survey completeness is calculated by averaging over all
stars that were successfully searched for planets according to
the timeoutsumry � ag.

The above equation assumes that the vetting completeness
(the fraction of planet transit signals(TCEs, Threshold
Crossing Events) properly classi� ed as planet candidates) and
reliability (the fraction of transiting candidates that are not
caused by instrumental artifacts or statistical false alarms) are
100%. The vetting completeness and reliability are very
important for small planets, especially at long orbital periods.
The vetting completeness decreases substantially when one
employs a high score cut on the DR25 catalog, while the
reliability approaches 100%. The net effect is that occurrence
rates are likely to be underestimated by ignoring both
corrections. It should be noted that all SAG13 calculations
also ignored vetting completeness and reliability. We note that
more work needs to be done to do a reliable occurrence rate
calculation.

For regions with no planet detections(low instellation, long
period orbits), occurrence rates were estimated with a
parametric function that is a broken power law in period and
radius. Free parameters were constrained using the Exoplanet
Population Observation Simulator(EPOS; G. D. Mulders et al.
2018, in preparation). EPOSgenerates planet populations from
this parametrized description using a Monte Carlo simulation,

and conducts synthetic observations using the survey com-
pleteness from the DR25 catalog. The synthetic observable
populations are compared with the observed planet distribution
from Keplerin the rangeP�= �[2400] days andRp�= �[0.5, 8] R� ,
and the posterior parameters are estimated usingemcee
(Foreman-Mackey et al.2013). Binned occurrence rates are
calculated by marginalizing the posterior parametric distribution
over the bin area, and taking the 50th, 16th, and 84th percentiles
for the mean and 1� error, respectively.

Table 4 provides the occurrence rates calculated from
Equation (5) for the same bins as in Tables1 and 2. The
values are more or less consistent within the uncertainties of
SAG13� baslfrom Table2. However, the extrapolations into the
cold planet regimes(low instellation � uxes) result in a
disagreement between SAG13 values and from Equation(5).
This is expected, considering that(1) the cold regimes do not
have any planet detections and any extrapolations are expected
to wildly deviate(even between the methodologies) from the
true distribution and(2) the SAG13 rates are a combination of
several individual methodologies.

Integrating the SAG13 parametric model across the bin
boundaries de� ned in Table1 gives the occurrence rates in
Figure 2, where we have assumedL�= �0.95Le and M�=
0.965Me . Each class of planet has an occurrence that is a
mixture of astrophysical effect and an observational bias. For
example, even though it is easier to detect giant planets in close
orbits, their occurrence rate is comparatively smaller(0.05)
than close-in sub-Neptune or terrestrial-sized planets(� 0.48,
respectively). The implication is that hot, giant planets are
likely fewer in number.

The trend in Figure2 indicates that the occurrence rate
generally increases, from larger planets to smaller ones in any
particular bin. We can de� ne the inner edge of the HZ as the
boundary whereH O2 starts condensing in a terrestrial planet’s
atmosphere and the outer edge of the HZ as theCO2
condensation boundary(Abe et al.2011). Within this zone, it
appears that the terrestrial-sized planets have higher occurrence
rates (0.2–0.3) than compared to either Jovians(0.053) or
Neptunes(0.07) planets. However, it should be noted that the
occurrence rate of terrestrial planets in this regime is severely
restricted by low number statistics.

2.2. Mission Yield Estimates

With the planet categorization scheme and associated
occurrence rates described above, we estimated the exoplanet
yields for each type of planet using the yield optimization code of
Stark et al.(2015). Brie� y, this code works by simulating the
detection of extrasolar planets around nearby stars over the
lifetime of a mission. To do so, it distributes a large number of
synthetic planets around each nearby star, sampling all possible
orbits and phases consistent with the planet de� nition, illuminates
them with starlight, calculates an exposure time for each planet
given a set of assumptions about the instrument and telescope,

Table 2
Coef� cients to be Used in Equation(1)

a b c d e f

ZnS 0.0010338041 Š0.0255230451 0.1858822989 Š0.4990171468 0.5690844110 1.6385396777
H O2 0.0017802416 Š0.0443704003 0.3302966853 Š0.9299682851 1.1366785108 0.6255832476
CO2 0.0002947546 Š0.0070583509 0.0483928147 Š0.1198359100 0.1477297602 0.2304769313
CH4 Š0.0000033096 0.0000889715 Š0.0007644190 0.0026719183 Š0.0038305535 0.0048373922
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and determines the fraction of planets that are detectable within a
given exposure time(i.e., the “completeness”). The code
optimizes the exposure time of each observation, as well as
which stars are observed, the number of observations to each star,
and the delay time between observations, to maximize the yield
for a given type of planet.

We � rst ran the yield code to de� ne the set of observations
that maximized the yield of exo-Earth candidates. We adopted
the same baseline mission parameters de� ned in Table 3 of
Stark et al.(2015) with exception to the OWA, which increased
from 15� / D to 30 � / D, the contrast for spectral characteriza-
tion, which improved from 5�× �10Š10 to 1�× �10Š10, the
spectral resolution, which increased fromR�= �50 to R�= �70,
and the SNR required for spectral characterization, which
increased from 5 to 10 per spectral channel. We also adopted a
new de� nition for exo-Earth candidates. We distributed exo-
Earth candidates across the Kopparapu et al.(2014) con-
servative HZ, which ranges from 0.95 to 1.67 au for a solar
twin. The semimajor axis distribution followed the analytic
SAG13 occurrence rate� ts. Exo-Earth candidates ranged from
0.5 to 1.4 Earth radii, with the lower radius limit set by

�ƒ* * -( ( ) )a L0.8 0.51 2 , a reasonable limit following the work
of Zahnle & Catling(2017). All exo-Earth candidates were
assigned a� at geometric albedo of 0.2. In this paper, the
exoEarths are used solely to optimize an observation plan. We
do not report on the yield of these exo-Earth candidates,
focusing instead on the yields of the classes of planets de� ned
in Section2 when following such an observation plan. We then
locked this set of observations in place and reran the yield code
to calculate the yield of each planet type discussed above,
simply by changing the planet’s input parameters each time.
For each planet type, we distributed planet radii and orbital
period according to the SAG13 distribution. We assumed
Lambertian phase functions for all planets.

To calculate the brightness of a given planet, we must also
know the planet’s albedo. The actual distribution of
exoplanet albedos is unknown. So, for this study, we simply
assigned each planet type a single reasonable albedo. We
adopted a wavelength-independent geometric albedo of 0.2 for
rocky planets and 0.5 for all other planets.

To calculate an expected yield, we must also assign each
planet type an occurrence rate. Table3 lists the occurrence rates
obtained from Section2.1 in each bin of planet size and planet
type (hot/ warm/ cold). The histogram plot in Figure3
visualizes the total scienti� c impact of the habitable planet
candidate survey. They-axis gives the expected total numbers
of exoplanets observed(yields), which are also given by the
numbers above the bars. By“expected,” we mean the most
probable yield after many trials of an identically executed
survey. Three sizes of exoplanets are shown, consistent with
Table1. For each planet size, three incident stellar� ux classes
are shown: hot(red), warm(dark blue), and cold(ice blue). The
boundaries between the classes correspond to the temperatures
where metals, water vapor, and carbon dioxide condense in a
planet’s atmosphere. The warm bin is not the same as the
habitable planet candidate bin, as it is likely too generous.

Figure 2. Planet occurrence rate estimates from the SAG13 baseline analysis(see Table3) as a function of incident� ux and planetary radius, assuming a star with
L�= �0.95Le and M�= �0.965Me . The boundaries of the boxes represent the regions where different chemical species are condensing in the atmosphere of that
particular sized planet at that stellar� ux, according to equilibrium chemistry calculations. The radius division is from Fulton et al.(2017) for super-Earths and sub-
Neptunes, and from Chen & Kipping(2016) for the upper limit on Jovians. The“å” values are based on extrapolation and therefore are very uncertain. See Section2.1
for more details.

Table 3
Occurrence Rates of Planets in Different Boundaries, De� ned in Table1

Classi� cation Scheme

Planet Type(Stellar Flux Range) Radius(R� ) � pess � basl � opt

Hot Rocky(182Š1.0) 0.5–1.0 0.22 0.67 2.04
Warm Rocky(1.0Š0.28) 0.5–1.0 0.09å 0.30å 1.04å

Cold Rocky(0.28Š0.0035) 0.5–1.0 0.50å 1.92å 7.61å

Hot Super-Earths(187Š1.12) 1.0–1.75 0.21 0.47 1.04
Warm Super-Earths(1.12Š0.30) 1.0–1.75 0.087 0.21 0.54
Cold Super-Earths(0.30Š0.0030) 1.0–1.75 0.50å 1.42å 4.14å

Hot Sub-Neptunes(188Š1.15) 1.75–3.5 0.29 0.48 0.79
Warm Sub-Neptunes(1.15Š0.32) 1.75–3.5 0.12 0.22 0.41
Cold Sub-Neptunes(0.32Š0.0.0030) 1.75–3.5 0.77å 1.63å 3.52å

Hot Sub-Jovians(220Š1.65) 3.5–6.0 0.05 0.07 0.12
Warm Sub-Jovians(1.65Š0.45) 3.5–6.0 0.04 0.07 0.13
Cold Sub-Jovians(0.45Š0.0030) 3.5–6.0 0.58å 1.35å 3.19å

Hot Jovians(220Š1.65) 6.0–14.3 0.028 0.056 0.11
Warm Jovians(1.65Š0.40) 6.0–14.3 0.023 0.053 0.12
Cold Jovians(0.40Š0.0025) 6.0–14.3 0.34å 1.01å 3.07å

Note. The � planet values are estimated using SAG-13 occurrence rates. Theå
values are based on extrapolation and therefore are very uncertain.
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We also calculated each planet’s yield when deviating from
the baseline mission parameters. Figures4 and 5 show the
sensitivity of each planet’s yield to changes in a single mission
parameter. Each yield curve has been normalized to unity at the
value of the baseline mission. As expected, the yield of hot
planets is more sensitive to the IWA than cold planets, and the
yield of cold planets is more sensitive to OWA than hot
planets. However, surprisingly, the yield of cold Jupiters is
quite sensitive to IWA, suggesting that an observation plan
optimized for the detection of exoEarths will typically detect
cold Jupiters in the gibbous phase near the IWA. We note that,
in general, larger apertures are less sensitive to changes in
mission parameters than smaller apertures.

3. Discussion

In this section, we discuss caveats to our classi� cation
scheme, and its relevance to future missions that plan to detect
and/ or characterize extrasolar planets.

3.1. Caveats to the Classi� cation Scheme

The boundaries discussed in earlier sections are made out of
the necessity for creating a single classi� cation scheme that
applies to all planets, and that can translate current planet

Figure 3. Expected number of exoplanets observed(y-axis) for the baseline occurrence rates in each planet category(rocky, super-Earths, sub-Neptunes, sub-Jovians,
and Jovians) for hot(red), warm(blue), and cold(ice-blue) incident stellar� uxes shown in Table1 and Figure2. The telescope sizes are(a) 4 m,(b) 8 m, and(c) 16 m.

Table 4
Occurrence Rates Calculated from Equation(5)

Planet Type(Stellar Flux Range) Radius(R� ) �

Hot Rocky(182Š1.0) 0.5–1.0 -
+0.552 0.150

0.195

Warm Rocky(1.0Š0.28) 0.5–1.0 �ƒ
-
+0.215 0.099

0.148

Cold Rocky(0.28Š0.0035) 0.5–1.0 �ƒ
-
+1.09 0.755

1.48

Hot Super-Earths(187Š1.12) 1.0–1.75 -
+0.374 0.056

0.068

Warm Super-Earths(1.12Š0.30) 1.0–1.75 -
+0.145 0.061

0.071

Cold Super-Earths(0.30Š0.0030) 1.0–1.75 �ƒ
-
+0.78 0.52

0.86

Hot Sub-Neptunes(188Š1.15) 1.75–3.5 -
+0.356 0.047

0.049

Warm Sub-Neptunes(1.15Š0.32) 1.75–3.5 -
+0.147 0.057

0.058

Cold Sub-Neptunes(0.32Š0.0.0030) 1.75–3.5 �ƒ
-
+0.85 0.57

0.88

Hot Sub-Jovians(220Š1.65) 3.5–6.0 -
+0.113 0.018

0.019

Warm Sub-Jovians(1.65Š0.45) 3.5–6.0 -
+0.051 0.020

0.021

Cold Sub-Jovians(0.45Š0.0030) 3.5–6.0 �ƒ
-
+0.279 0.18

0.31

Hot Jovians(220Š1.65) 6.0–14.3 -
+0.004 0.004

0.011

Warm Jovians(1.65Š0.40) 6.0–14.3 -
+0.002 0.001

0.004

Cold Jovians(0.40Š0.0025) 6.0–14.3 �ƒ
-
+0.008 0.007

0.031

Note. Comparing with the� basl values from Table3 from SAG-13 occurrence
rates, the SAG13 values are more or less consistent with the values given
below within the uncertainties. We use the� basl values from Table3 to
calculate the exoplanet yield estimates in Section2.2. As with Table3, theå
values are extrapolated.
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obervations into predictions of future planet yields. No single
scheme will be able to properly capture the complex
interactions between myriad planetary processes in exoplanet
atmospheres. An analogy with the HZ here is useful: the HZ is
not a good means of determining the habitability of a single
planet. Instead, it is best used to understand how many
potentially habitable worlds a given mission may be able to

probe for evidence of habitability. Similarly, the classi� cation
scheme discussed in this paper is probably not the best means
for determining whether a single world has a certain
combination of clouds decks or upper atmospheric composi-
tion. Ultimately, that should be determined by speci� c
observations of such worlds. What this scheme is useful for
is to help understand the diversity and the number of worlds

Figure 4. Yield for each planet type when deviating from the baseline mission by varying one parameter at a time. The top panel is for a 4 m mirror size and the
bottom is for 8 m. Solid, dashed, and dotted lines correspond to rocky, sub-Neptune, and Jovian planet types. Color scheme is the same as that in Figure3.
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